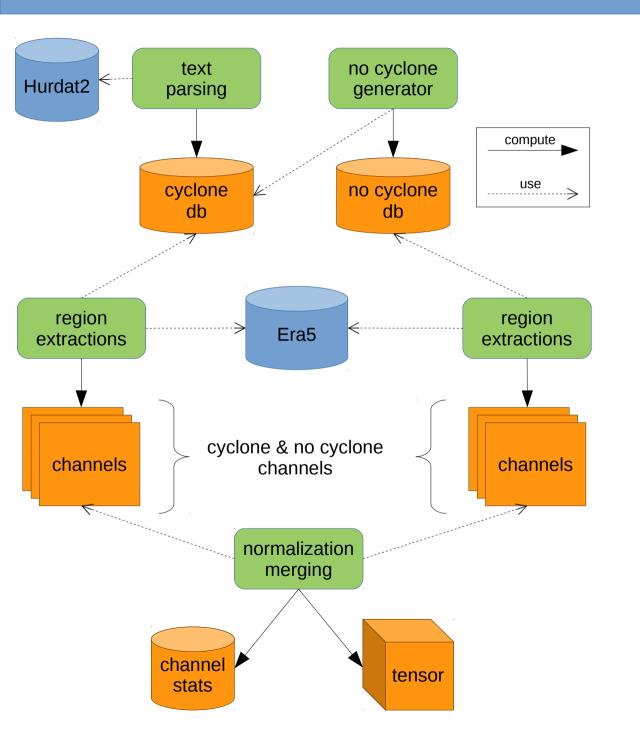
CYCLONE DETECTION

Sébastien Gardoll

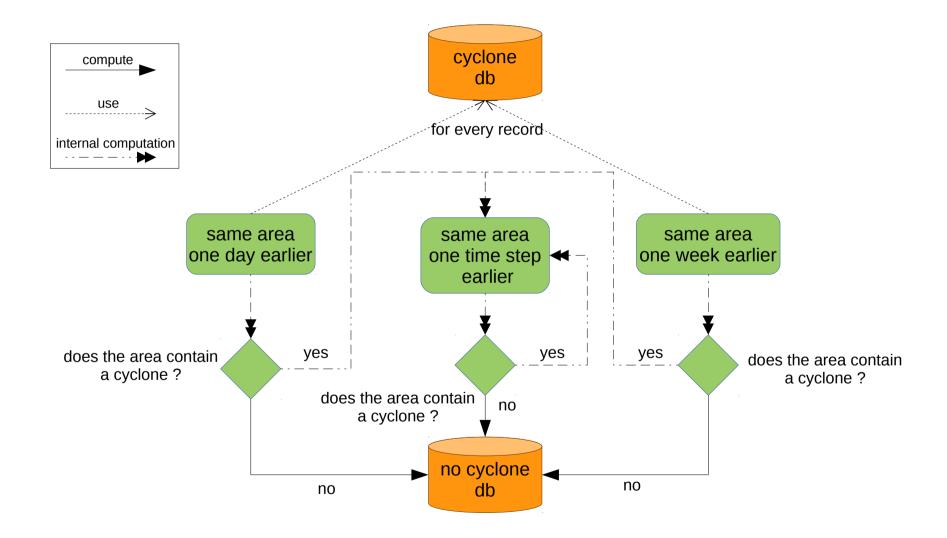
19/02/2019

Data pre-processing

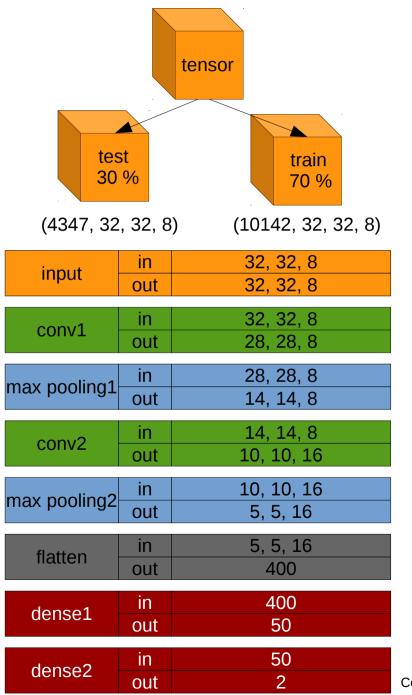


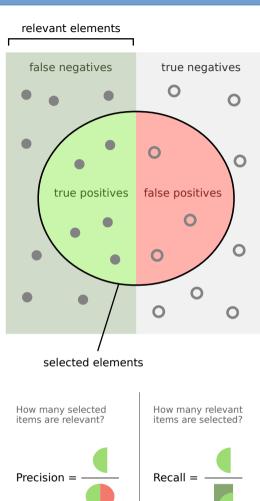
• Hurdat2: reanalysis of Atlantic basin cyclone observations from 1851 to 2017

- Using Era5 netcdf files (resolution: 0.25)
- Variables (8):
- msl: mean surface pressure
- ta200, ta500: temperature
- u10, u850: wind W=>E
- v10, v850 : wind N=>S
- tcwv : total column water vapour
- Dataset 2000-2017
- except 08/2000 (99 cyclone locations)
- cyclone db: 4853 cyclone locations
- no cyclone db: 9636 locations
- Channel shape : 14489, 32, 32
- Tensor shape : 14489, 32, 32, 8 (453 Mo)
- Processing:
- wall clock time: 15 mins (ciclad-ng)
- ad hoc multi-processing design
- 8 jobs
- 4 processes/job
- 1 Go RAM/job
- 1728 netcdf files opened (> 150 Mo ; > 5 Go)
- 1143 python sloc ; 123 bash sloc
- Xarray version :
- takes around 100 Go RAM for msl
- 15 mins for processing msl



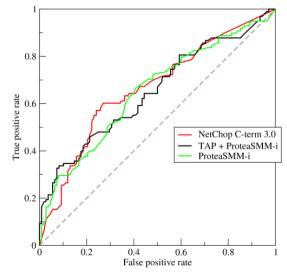
ConvNet Training





• Settings:

- Keras with TensorFlow backend
- batch_size: 5
- epochs: 75 (converges to 0.99 at 14)
- loss: binary_crossentropy
- metrics: accuracy
- optimizer: SGD
- Processing:
- wall clock time: 25 mins
- 1 node, 4 cores
- 133 python sloc ; 41 bash sloc
- Metrics:
- AUC: 0.9995
- accuracy: 0.9912
- loss: 0.0332

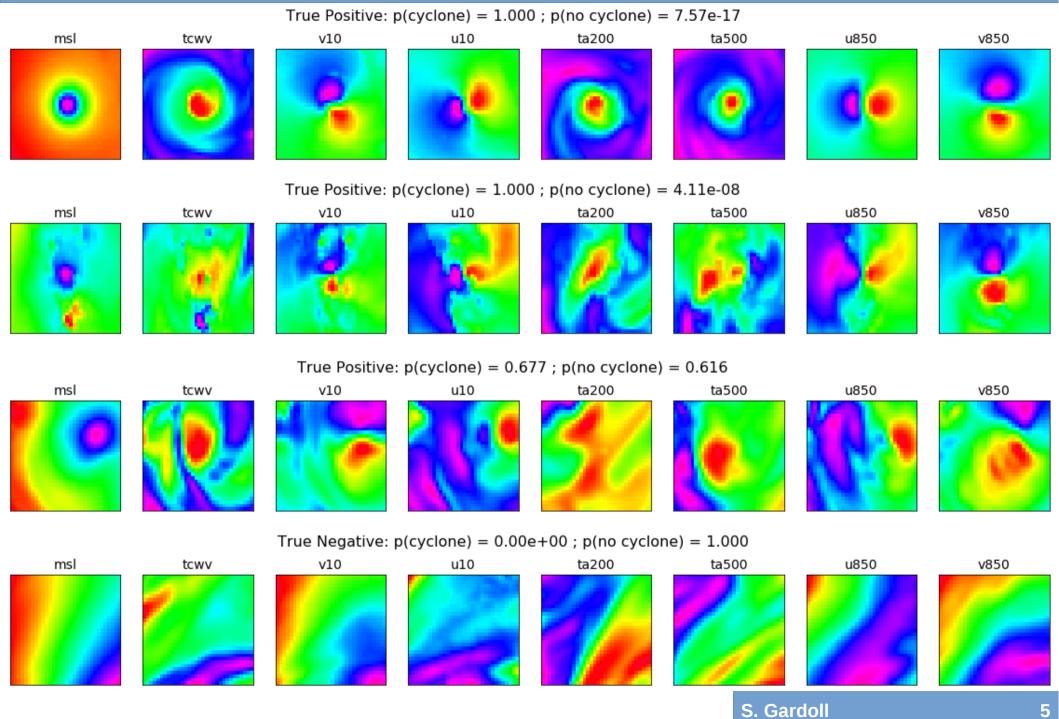


From Wikipedia CC BY-SA 3.0

Conception from Y. Liu et al ; CoRR 2016 1605.01156

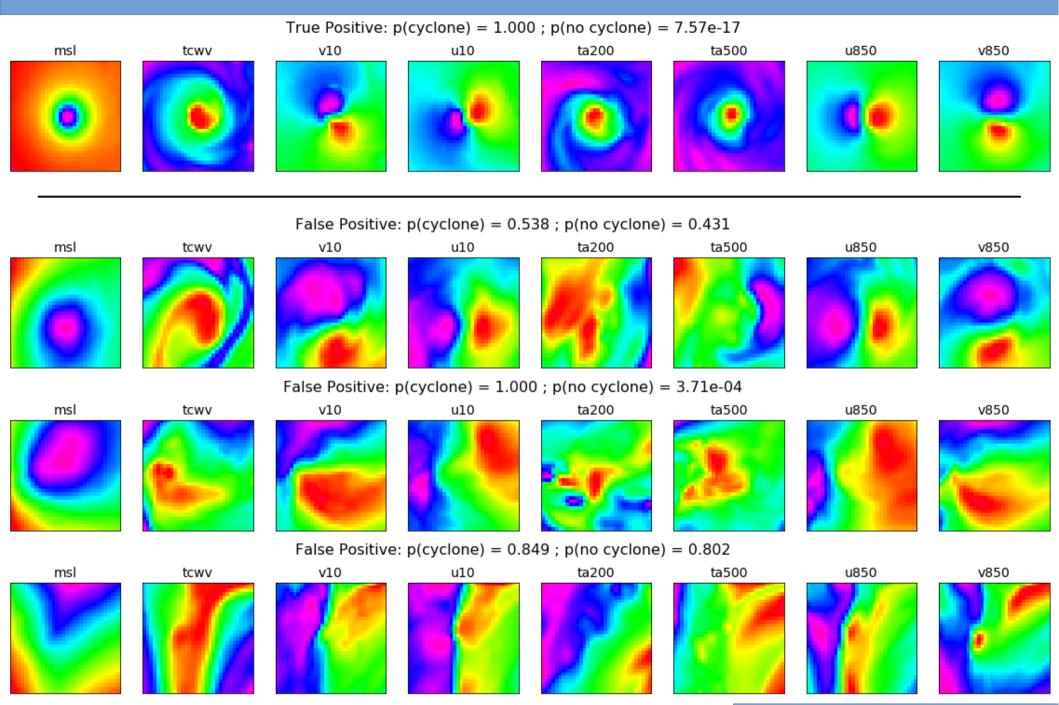
From Wikipedia, CC BY-SA 4.0

True positives & negatives



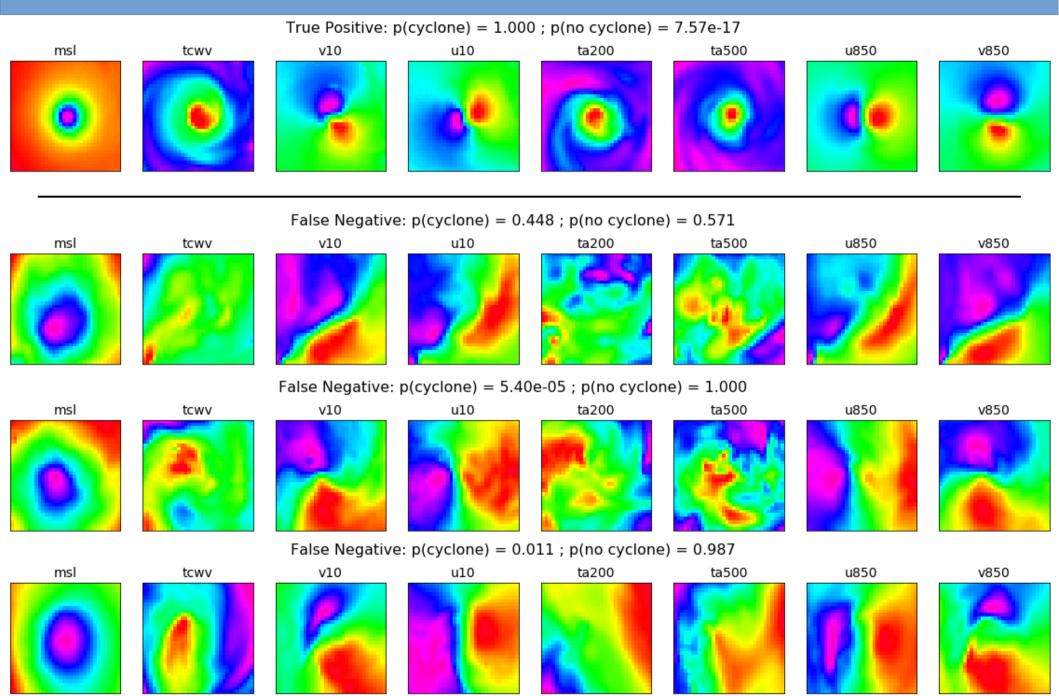
5

False positives



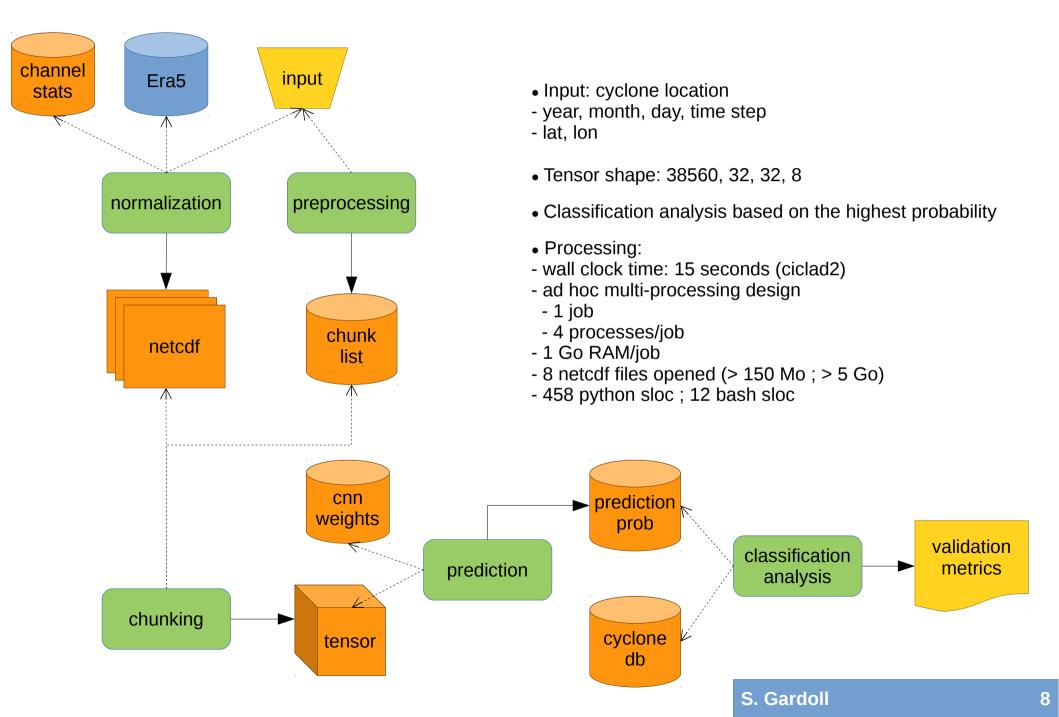
S. Gardoll

False negatives

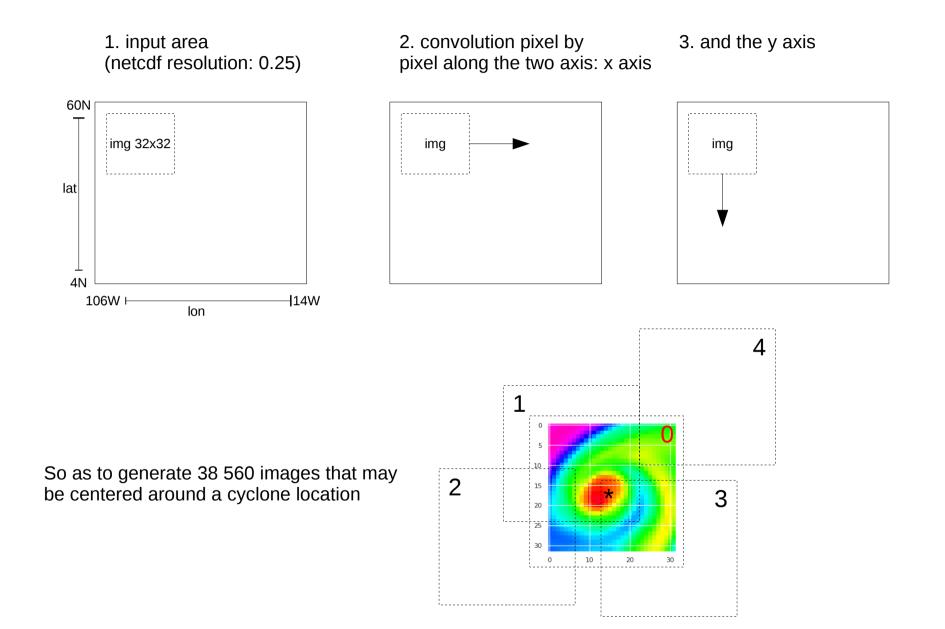


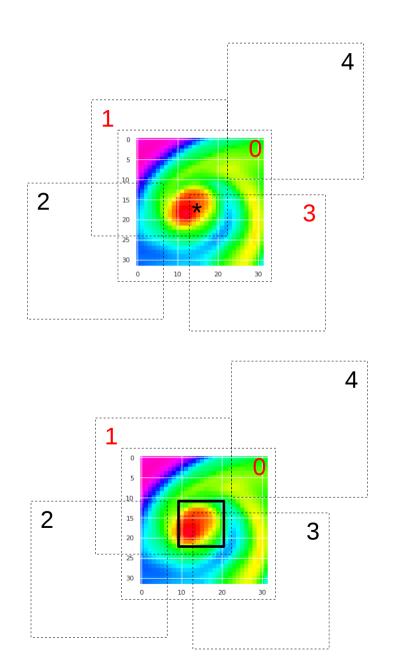
S. Gardoll

Prediction



Chunking





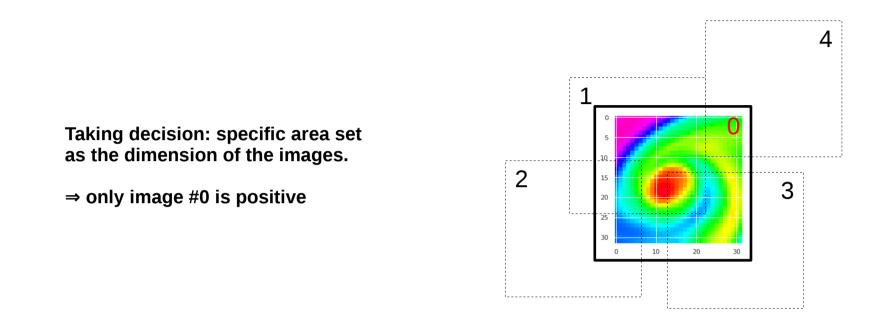
Classification metrics imply the notion of positives/negatives.

Assumption for labelling the chunks:

Images that **contain** a specific area, are positives and the other images are negatives.

- If specific area = cyclone location (point from cyclone db)
- \Rightarrow images #0, #1 and #3 are positives
- \Rightarrow images #2 and #4 are negatives

- If specific area = zone with a cyclone location as its center
 ⇒ images #0 and #1 are positives
- \Rightarrow images #2, #3, #4 are negatives



Choosing a very restrictive way of labeling the positive images, makes the model to produce a lot of false positives.

Do the false positives contain a bit of the cyclone image (intersection) ? Yes for all the 08/2000 cases (99 cyclone locations) !

 \Rightarrow At first glance, false positives are artifacts introduced by the labeling method.

 \Rightarrow The precision for the label cyclone is not relevant (not yet).

Classification metrics

Performed on the cyclone locations of august 2000 (99 cyclone locations)

- all cases: the precision and recall of the no cyclone label are nearly equal to 1 .
- all cases: the precision of the cyclone label is less than 0.005 .
- 94/99 cases: the recall of the cyclone label is equal to 1 .

Conclusions:

Precision and recall of the no cyclone label are nearly perfect
 ⇒ Classification of the no cyclone is nearly perfect.
 ⇒ The generator of no cyclone images is validated.

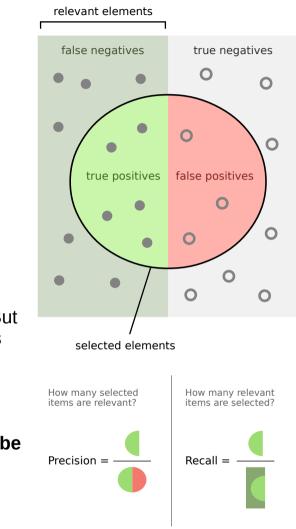
• Precision of the cyclone label is nearly null when considering the false positives. But as all the false positives contain a bit of the cyclone image, we can assume that this metric is not relevant for the moment.

 \Rightarrow The location of the cyclones is still to be computed !

• Recall of the cyclone label is perfect for 94/99 cases.

 \Rightarrow Model still misses some cyclones but the exact location of the cyclone can be computed thanks to the false positives.

- Naive attribution of label based on the highest probability is enough.
- Chunking algorithm may be improved (into something like facial recognition)



From Wikipedia, CC BY-SA 4.0

Thank you for your attention